3.1.59 \(\int \frac {1}{\sqrt {-3+x^2+2 x^4}} \, dx\) [59]

Optimal. Leaf size=63 \[ \frac {\sqrt {-1+x^2} \sqrt {3+2 x^2} F\left (\sin ^{-1}\left (\frac {\sqrt {\frac {5}{3}} x}{\sqrt {-1+x^2}}\right )|\frac {3}{5}\right )}{\sqrt {5} \sqrt {-3+x^2+2 x^4}} \]

[Out]

1/5*EllipticF(1/3*x*15^(1/2)/(x^2-1)^(1/2),1/5*15^(1/2))*(x^2-1)^(1/2)*(2*x^2+3)^(1/2)*5^(1/2)/(2*x^4+x^2-3)^(
1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.00, antiderivative size = 63, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.071, Rules used = {1111} \begin {gather*} \frac {\sqrt {x^2-1} \sqrt {2 x^2+3} F\left (\text {ArcSin}\left (\frac {\sqrt {\frac {5}{3}} x}{\sqrt {x^2-1}}\right )|\frac {3}{5}\right )}{\sqrt {5} \sqrt {2 x^4+x^2-3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[-3 + x^2 + 2*x^4],x]

[Out]

(Sqrt[-1 + x^2]*Sqrt[3 + 2*x^2]*EllipticF[ArcSin[(Sqrt[5/3]*x)/Sqrt[-1 + x^2]], 3/5])/(Sqrt[5]*Sqrt[-3 + x^2 +
 2*x^4])

Rule 1111

Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[Sqrt[-2*a - (
b - q)*x^2]*(Sqrt[(2*a + (b + q)*x^2)/q]/(2*Sqrt[-a]*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[ArcSin[x/Sqrt[(2*a +
(b + q)*x^2)/(2*q)]], (b + q)/(2*q)], x] /; IntegerQ[q]] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0] && LtQ[
a, 0] && GtQ[c, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {-3+x^2+2 x^4}} \, dx &=\frac {\sqrt {-1+x^2} \sqrt {3+2 x^2} F\left (\sin ^{-1}\left (\frac {\sqrt {\frac {5}{3}} x}{\sqrt {-1+x^2}}\right )|\frac {3}{5}\right )}{\sqrt {5} \sqrt {-3+x^2+2 x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.03, size = 63, normalized size = 1.00 \begin {gather*} -\frac {i \sqrt {1-x^2} \sqrt {3+2 x^2} F\left (i \sinh ^{-1}\left (\sqrt {\frac {2}{3}} x\right )|-\frac {3}{2}\right )}{\sqrt {2} \sqrt {-3+x^2+2 x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[-3 + x^2 + 2*x^4],x]

[Out]

((-I)*Sqrt[1 - x^2]*Sqrt[3 + 2*x^2]*EllipticF[I*ArcSinh[Sqrt[2/3]*x], -3/2])/(Sqrt[2]*Sqrt[-3 + x^2 + 2*x^4])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.04, size = 51, normalized size = 0.81

method result size
default \(-\frac {i \sqrt {6}\, \sqrt {6 x^{2}+9}\, \sqrt {-x^{2}+1}\, \EllipticF \left (\frac {i x \sqrt {6}}{3}, \frac {i \sqrt {6}}{2}\right )}{6 \sqrt {2 x^{4}+x^{2}-3}}\) \(51\)
elliptic \(-\frac {i \sqrt {6}\, \sqrt {6 x^{2}+9}\, \sqrt {-x^{2}+1}\, \EllipticF \left (\frac {i x \sqrt {6}}{3}, \frac {i \sqrt {6}}{2}\right )}{6 \sqrt {2 x^{4}+x^{2}-3}}\) \(51\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*x^4+x^2-3)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/6*I*6^(1/2)*(6*x^2+9)^(1/2)*(-x^2+1)^(1/2)/(2*x^4+x^2-3)^(1/2)*EllipticF(1/3*I*x*6^(1/2),1/2*I*6^(1/2))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x^4+x^2-3)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/sqrt(2*x^4 + x^2 - 3), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x^4+x^2-3)^(1/2),x, algorithm="fricas")

[Out]

0

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {2 x^{4} + x^{2} - 3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x**4+x**2-3)**(1/2),x)

[Out]

Integral(1/sqrt(2*x**4 + x**2 - 3), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x^4+x^2-3)^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(2*x^4 + x^2 - 3), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {1}{\sqrt {2\,x^4+x^2-3}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^2 + 2*x^4 - 3)^(1/2),x)

[Out]

int(1/(x^2 + 2*x^4 - 3)^(1/2), x)

________________________________________________________________________________________